The total strain energy within any annular area of inner and outer radii
rQ) and R is

o rR | o R
P = [ / 5 Tig€is T dr df ~ f / r2A) dr 48
JO 0 0 To

Because @ < - and A > -1, the physically admissible values of A are

1 1 3 Z
=-=,0,=,1,=,2,..-,2
. . A 2! ?23 ?21 ? 321

where Z is and integer.

Taking A =-1/2

6 1 36
x =12 A, cos 5 + 3 cos-ﬁ] +O(r?) + 0(5/2) cee

015 = Ayr=1/2 Gl (9) + Ou (r°) + Oy (,,.1/2) ..

Rewriting
KI/\/ﬁ
_ Ko
Jij = \/% 023(9) + T(Sw&jr

+ (terms which vanish at crack tip),
K is the stress intensity factor for mode I. Gj; is the Kronecker delta.



Possible Crack Coﬁfigurations (D
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Real Cracks in Real Structures
Most structures and components contain surface cracks
Surface cracks may be idealized as
-- quarter elliptic cracks/corner cracks
-- semi-elliptical/thumbnail cracks
-- elliptical/embedded cracks
Cracks may be present at holes, pins or other stress concentrators
Cracks may be subjécted to combinations of bending, tension, torsion

Cracks may also have multiple crack combinations

Simple fracture mechanics approach applicable in many cases



Possible Crack Configurations (II)
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Possible Crack Configurations (III)
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Possible Crack Configurations Iv)
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Possible Crack Configurations (V)
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Possible Crack Configurations (VI)
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Possible Crack Configurations (VII)




Possible Crack Configurations (VIII)
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Possible Crack 'Configurations (IX)
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Possible Crack Configurations (X)
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Monotonic Plastic Zone Sizes

e Size depends on stress state
e [rwin (1966) showed that:
o PZS = (A/S*PI)*[DK/sy]
* A =3 (plane strain)
* A =1 (plane stress)
* Other expressions by Dugdale and Barrenblatt



Cyclic Plastic Zone

« Smaller than monotonic plastic zone
* Affected by reversed plasticity

e PZS = (1/Pl)*{DK/23y] (Rice, 1967)

* Residual wake left behind crack-tip

» Residual stresses iInduced as a result
* May promote crack closure



Crack Opening Displacement

* Change in CTOD between max and min load
* Function of delta K, E and yield stress

» Crack extension related to this change

e Crack opens to maximum load

* Extension due to plastic processes



Plastic Zone Size Under Cyclic Loading

* PZ existence under cyclic loading long recognized
* Paris (1960), McClintock (1963) & Rice (1967)

- * Experimental evidence by Hahn, Hoagland & Rosenfield
(1972)

* PZ controled by reversed plasticity
~* PZ much smaller under cyclic loading



Schematic representation of the development of cyclic plastic zone upon unloading

(After Rice, 1967)
H'P b § t-ar b Y Y poap
o,,(x, 0) a,,(x, 0) ,,(x, 0)

cyclic plastic zone
| o, P monotonic plastic zone
\ iy rc‘ e :
=\—‘Q¥ X —_—X X
g P e
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(a) b1y (%) | “ ©)

.~ 1[(AK\?
c T\ 20, ) °
(a) Monotonic plastic zone created by a far-field load P.
(b) Stress distribution due to the reduction of the reduction of the load by AP

which, when superimposed with (a), givethe result in (c¢)




Modeling of Plastic Zone Under Cyclic
Loading

* For proportional plastic flow monotonic egns used
* Upon load reversal, P is reduced to P - DP
o Loading parameter replaced by DP
* s, replaced by 2s_in monotonic eqns for PZ
* For elastic perfectly plastic solid s in PZ = S,
¢ For plane stress conditions: ro=(1 /PI)(DK/2sy)2



Consequences of Reversed Plastic Flow

* Residual plasticity remains even after unloading

* Reisdual plasticity has implications for VA loading
~ « Residual stresses self equilibrating

* -ve tip stresses offset by +ve stresses ahead of tip

* Non closing compressive loading induced residual tension
* Cyclic variation induces change in CTOD



Dugdale Model - Estimates of PZ for
Mode I Crack (1960)

* Thin plastic strip of elastic perfectly plastic solid
* Plastic zone loaded by S, overr,

°r = (PI/-8)"‘(K|./sy)2
* Similar to Irwin's estimates for plane stress
* CTOD is consequence of necking ahead of crack



The Dugdale Model

The size of .the yi‘eld zone ahead of a mode I crack in a thin plate of an elastic-
perfectly plastic solid (subject to plane stress deformation) was estimated by
Dugdale (1960). If the traction Gy, =0, were to be applied simultaneously along

the length of the strip a<|x|<a+r, it would superimpose a negative stress
intensity factor K, on K, where

K;=~0,n(a+r,)+20, (a+rp)sin‘1( : J " 1)

(| a-+r
. - - - p
Since a singular, deviatoric stress state cannot exist at the boundary of the
plastic zone, KI-;-KI = 0 (see Hellan, 1984, for further details). Solving for r_, one
finds that P

r, ne” |
— = sec[—] -1 (2)

a 2(5),

For 6™ << o, and hence for r, <<a, Eq. (1) will asymptotically lead to a plastic
zone size

2
'R[Kl]
r,==—
8 o,

This asymptotically exact result due to Dugdale compares well with the Irwin
approximation for plane stress.




A schematic representation of the Dugdale plastic zone model




Barenblatt Model (1962)

* Analogue to strip yield model for brittle materials
~ » Consider s,, = bond rupture strength (E/10)

» Critical crack size f(crack-tip cohesive zone)

* Or critical crack size = f(COD) - (Rice, 1 968)



Elastic-Plastic Fracture Mechanics

* LEFM valid only for limited plasticity
* EPFM needed for many cases

* CTOD (Wells, 1963)

* Jintegral (Rice 1968)

* Delta J of Delta(CTOD)



Crack-Tip Opening Displacement

* CTOD expressions derived from Dugdale model
* More accurate models include effect of hardening
* CTOD definition somewhat arbitrary

* Fracture occurs at critical CTOD

* FCG related to delta(CTOD)



Definition of crack tip opening displacement, 5t




Crack Tip Opening Displacement

The definition of 5t is somewhat arbitrary because the distance between the
crack faces, o=\, (x,O’“)—uy (X,O") varies as (-x)"™" ag the crack tip is
approached.

A commonly used operational definition of 5t is based on the distance between
two points on the upper and lower crack faces where two 45°C lines drawn from
the deformed crack tip intercept the crack faces.

5, =d,

Oy

where d, is a function of 0, €, and n. d_ ranges in value from about 0.3 to 0.8
as n is varied from 3 to 13.




J Integral and Conditions of J-Dominance

du

J=jr(0)dy T- é-*ds)

where u = displacement vector, y = direction along normal to crack plane
s = arc length, T = traction vector, ® = stram energy density,

0, =304,

For linear elastic and non-linear elastic behavior - J path independent

’

Rice (1968) showed that
J=G=— d(PE)
oa

Hutchinson (1983) - Jvalid when:

-- J2 deformation theory of plastlmty gives adequate model of ¢ — ¢
behavior

-- Damage and high strain reglon within HRR field
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Hutchinson-Rice-Rosengreen Singular
Fields

* Hutchinson (1968) & Rice and Rosenfield (1968)
* Elastic power law material

* Ramberg-Osgood relationship characterizes matrix
behavior

* J, Deformation Theory
* J is a measure of the intensity of the cracktip fields

* J =J_ when conditions of J dominance satisfied (ASTM
E813)



Hutchinson-Rice-Rosengreen (HRR) Singular Fields

Developed for non-linear elastic solids - small strain monotonic deformation
--  Hutchinson (1968)

-- Rice & Rosegreen (1968)
Near-tip fields given by

1

Y
Gij = Gy Gij (9, I'l)

oo,€ I r
o
{ J Jn+1
€. =0E€ €.(0,n)
J y 1)
oo I, 1 .
o
J 0+ 1)
u; =O£8y B R r ﬁi(e,n)
| oo €1,

G;;(8,n), €;(6,n) and ©;(6,n) are universal functions.



Conditions for J Dominance

e See review article by Hutchinson (1983)

e Deformation theory of plasticity must be adequate

e This is true for proportional loading (monotonic loading)
* J, theory not satisfied for elastic-power law plastic solid
e Region of finite strains within process zone

* Finite strain effects significant over 3*CTOD



Condition For J Dominance

For J-controlled crack growth, Hutchinson & Paris (1979) have suggested that the

regime of elastic unloading and nonproportional loading should be confined to well
within the zone of J-dominance. In other words,

EJ—>>1 and Aa << R
da R




Determination of J -integral with stabilized cyclic hysteresis loops.

(©
b

(a) Hysteresis loops for two different crack lengths in displacement-controlled
fatigue and the translation of the rising part of the stabilized hysteresis loop to a
common origin. (b) Similar method for load-controlled fatigue with the minimum
load being employed as the reference point. (c) Determination of J using a single

specimen. -




Fracture Processes and J Dominance

» Region of J dominance must engulf fracture process zone

e HRR solutions hold over 20-25% of PZS in ductile solids

e J dominance specimen dependent for large scale yielding
* 1% of length of uncracked ligament for CCT panel |

» 7% for deeply noched bend bar (McMeeking & Parks,
1979)

e R > GS for intergranular/transgranular fracture
e R > particle spacing for ductile dimpled fracture



